ESERK5: A fifth-order extrapolated stabilized explicit Runge–Kutta method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrapolated Implicit-Explicit Time Stepping

This paper constructs extrapolated implicit-explicit time stepping methods that allow one to efficiently solve problems with both stiff and nonstiff components. The proposed methods are based on Euler steps and can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method of lines framework. Implicit-explicit schemes based on extrapolation are simple to construct, ea...

متن کامل

A Fifth Order Flux Implicit WENO Method

The weighted essentially non-oscillatory method (WENO) is an excellent spatial discretization for hyperbolic partial differential equations with discontinuous solutions. However, the time-step restriction associated with explicit methods may pose severe limitations on their use in applications requiring large scale computations. An efficient implicit WENO method is necessary. In this paper, we ...

متن کامل

Effective order strong stability preserving RungeKutta methods

We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...

متن کامل

Exponentially Fitted Fifth-Order Two-Step Peer Explicit Methods

The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with dimension six. Finally, som...

متن کامل

A Stabilized Local Projections Extrapolated Finite Element Method for the Navier-Stokes Equations

A full discrete stabilized finite element scheme for the transient Navier-Stokes equations is proposed, based on the pressure projection and the extrapolated trapezoidal rule. The transient Navier-Stokes equations are fully discretized by the lowest equal-order finite elements in space and the reduced Crank-Nicolson scheme in time. This scheme is stable for the equal-order combination of discre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2019

ISSN: 0377-0427

DOI: 10.1016/j.cam.2019.01.040